Invariant subspaces and rational approximation

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pascal's Triangle, Normal Rational Curves, and their Invariant Subspaces

Each normal rational curve Γ in PG(n, F ) admits a group PΓL(Γ) of automorphic collineations. It is well known that for characteristic zero only the empty and the entire subspace are PΓL(Γ)–invariant. In case of characteristic p > 0 there may be further invariant subspaces. For #F ≥ n+ 2, we give a construction of all PΓL(Γ)–invariant subspaces. It turns out that the corresponding lattice is to...

متن کامل

Invariant Subspaces, Quasi-invariant Subspaces, and Hankel Operators

In this paper, using the theory of Hilbert modules we study invariant subspaces of the Bergman spaces on bounded symmetric domains and quasi-invariant sub-spaces of the Segal–Bargmann spaces. We completely characterize small Hankel operators with finite rank on these spaces.

متن کامل

Approximation from shift - invariant subspaces of L 2 ( IR d )

Abstract: A complete characterization is given of closed shift-invariant subspaces of L2(IR) which provide a specified approximation order. When such a space is principal (i.e., generated by a single function), then this characterization is in terms of the Fourier transform of the generator. As a special case, we obtain the classical Strang-Fix conditions, but without requiring the generating f...

متن کامل

Approximation from Shift - Invariant Subspaces of L 2 ( R d )

In this report, a summary of [1] is given. In [1] the authors provide a complete characterization of closed shift-invariant subspaces of L2(R) and the corresponding approximation order. The characterization of principal shift-invariant spaces is given in terms of the Fourier transform of the generator. The approximation order of a general shift-invariant space is the same as a suitably chosen p...

متن کامل

APPROXIMATION FROM SHIFT-INVARIANT SUBSPACES OF L2(Rd)

A complete characterization is given of closed shift-invariant subspaces of L2(Rd) which provide a specified approximation order. When such a space is principal (i.e., generated by a single function), then this characterization is in terms of the Fourier transform of the generator. As a special case, we obtain the classical Strang-Fix conditions, but without requiring the generating function to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 1971

ISSN: 0022-1236

DOI: 10.1016/0022-1236(71)90036-x